Algebra

1 Solve each of the following inequalities.
a $\frac{1}{2} y+3>2 y-1$
b $x^{2}-8 x+12 \geq 0$

2 Find the set of integers, n, for which

$$
2 n^{2}-5 n<12
$$

3

The diagram shows a rectangular birthday card which is $x \mathrm{~cm}$ wide and $(x+8) \mathrm{cm}$ tall.
Given that the height of the card is to be at least 50% more than its width,
a show that $x \leq 16$.
Given also that the area of the front of the card is to be at least $180 \mathrm{~cm}^{2}$,
b find the set of possible values of x.
4 Find the set of values of x for which

$$
(3 x-1)^{2}<5 x-1
$$

5 Given that $x-y=8$,
and that $\quad x y \leq 240$,
find the maximum value of $(x+y)$.
6 Solve the inequality

$$
(3 t+1)(t-4) \geq 2 t(t-7)
$$

7 Given that the equation $2 x(x+1)=k x-8$ has real and distinct roots,
a show that $k^{2}-4 k-60>0$,
b find the set of possible values of k.
8

A party hat is designed in the shape of a right circular cone of base radius $r \mathrm{~cm}$ and slant height $(3 r-4) \mathrm{cm}$.

Given that the height of the cone must not be more than 24 cm , find the maximum value of r.

